MO-ENG-C30 12-03

File Code: Coop. Folder Sheet 1 of 2

DESIGN WORKSHEET REINFORCED CONCRETE DROP BOX SPILLWAY ISLAND TYPE STRUCTURES

Owner		Field No.
Designer Date	e Checker _	Date
structure drainage area = design depth of waterway = waterway sideslope =	outl	r elevation = let elevation = rfall =
For Runoff use Engineering Fiel	d Handbook, Chapter 2 and F	Form MO-ENG-13
Minimum Capacity from M	issouri Practice Standard 410	, Grade Stabilization Structure
	y Design Capacity = cfs for ye	cfs for year, 24-hour storm ear, 24-hour storm
SIZING STRUCTURE Select structure dimensions to fir Dimensions	t capacity, outlet channel, ove	erfall, and available head.
box width (w) = box depth (b) = overfall (f) = weir length (ℓ) =	head (h	(to crest of auxiliary spillway) 2) = (to top of headwall)
BOX INLET WEIR CAPACITY $Q_b = (C_1) \times (C_2) \times 3.43$ $1.1 + 0.01f$	$x h^{3/2} x \ell$	
$\frac{\mathbf{n}_1}{\mathbf{w}} = \underline{\qquad} = \underline{\qquad}$	$C_{1(1)} = \underline{\qquad}$ from Shee	et 2
$\frac{h_2}{w} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	$C_{1(2)} = \underline{\qquad}$ from Shee	et 2
$\frac{b}{w} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	$C_2 = \underline{\qquad}$ from Sheet 2	
Design Capacity = Q_{b1} =	x x 3.43 x	² x
	1.1 + 0.01f cfs @ Auxiliary Spillw	
Design Capacity = Q_{b2} =		² x
=	1.1 + 0.01f cfs @ Top of Headwal	1

File Code: Coop. Folder

Sheet 2 of 2

DESIGN WORKSHEET REINFORCED CONCRETE DROP BOX SPILLWAY ISLAND TYPE STRUCTURES

Table 1. – Correction for head (Control at box-inlet crest)

Factor C₁

h/w	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0						0.76	0.80	0.82	0.84	0.86
0.1	0.87	0.88	0.89	0.90	0.91	0.91	0.92	0.92	0.93	0.93
0.2	0.93	0.94	0.94	0.95	0.95	0.95	0.95	0.96	0.96	0.96
0.3	0.97	0.97	0.97	0.97	0.98	0.98	0.98	0.98	0.98	0.98
0.4	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	1.00
0.5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.6	1.00									

Correction is 1.00 when h/w exceeds 0.6.

TABLE 2. – Correction for box-inlet shape (Control at box-inlet crest)

Factor C₂

b/w	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.98	1.01	1.03	1.03	1.04	1.04	1.03	1.02	1.01	1.01
1	1.00	0.99	0.99	0.98	0.98	0.98	0.97	0.97	0.96	0.96
2	0.96	0.96	0.95	0.95	0.95	0.95	0.95	0.95	0.94	0.94
3	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.93	0.93
4	0.93									

APPROACH	CHANNEL	DIMENSIONS
----------	---------	------------

free board = _____ ft.; top of fill elevation = _____

1. Minimum width shall be $BW = 2L-h_2z$	L = weir length,	h_2 = head at top of	headwall, $z = 1$	sideslopes
BW =		(Use	ft.)

2. Slope shall be flat upstream far enough to encompass the entrance to the auxiliary spillway.

$$\begin{array}{l} \underline{AUXILIARY\ SPILLWAY} \\ q_a = 2.75\ H^{3/2} = 2.75\ x \underline{\hspace{1cm}}^{3/2} = \underline{\hspace{1cm}} cfs\ (Auxiliary\ Spillway\ Discharge\ per\ foot\ of\ width) \\ Q_t \underline{\hspace{1cm}} minus\ Q_{b2} \underline{\hspace{1cm}} = Q_a \underline{\hspace{1cm}} (total\ required) \\ Auxiliary\ Spillway\ Crest\ elevation = 0.5'\ lower\ than\ top\ of\ headwall\ = \underline{\hspace{1cm}} \\ Auxiliary\ Spillway\ sideslope\ = \underline{\hspace{1cm}} :1 \\ Auxiliary\ Spillway\ width\ = \underline{Q_a} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} ft.\ (Use\ \underline{\hspace{1cm}} ft.) \\ H = flow\ depth\ = \underline{\hspace{1cm}} ft.\ (for\ auxiliary\ spillway\ discharge) \end{array}$$